High

Northern Michigan will have 30-50 fewer days of frozen ground during the winter by the end of the century.

Submitted by sdhandler on

In the Upper Midwest, the duration of frozen ground conditions suitable for winter harvest operations has already shortened by 2 to 3 weeks in the past 70 years. Cold-season soil temperatures are projected to increase between 1.8 and 5.4 °F by the end of the century, and total frost depth is projected to deline by 40 to 80 percent across northern Michigan by the end of the century. These conditions could increase water infiltration into the soil and reduce runoff, but they may also lead to greater soil water losses through increased evapotranspiration.

Northern Michigan's winter snowpack will be reduced from 30-80% by the end of the century.

Submitted by sdhandler on

A variety of models project that across the Upper Midwest, more winter precipitation will be delivered as rain, more snow will melt between snowfall events, and the snowpack will not be as deep or consistent. Lake-effect snowfall may increase in the short-term, but these events may convert to rain as temperatures increase.

Temperatures in northern Wisconsin and western Michigan will increase between 3 °F and 9 °F by the end of the century, with more warming during winter.

Submitted by sdhandler on

Northern Wisconsin and the western Upper Peninsula have already warmed more than 1.5 degrees since the first half of the 20th century, which is one of the fastest rates of warming across the country. All global climate models project that temperatures will increase with continued increases in atmospheric greenhouse gas concentrations. More warming is projected under a high climate scenario (RCP 8.5) and more moderate warming is projected under a moderate climate scenario (RCP 4.5).

Northern Michigan temperatures will increase between 4°F and 10°F by the end of the century, with more warming during winter.

Submitted by sdhandler on

Northern Michigan has already warmed more than 1.5 degrees since the first half of the 20th century, which is one of the fastest rates of warming across the country. All global climate models project that temperatures will increase with continued increases in atmospheric greenhouse gas concentrations. More warming is projected under a high climate scenario (RCP 8.5) and more moderate warming is projected under a moderate climate scenario (RCP 4.5).

Systems that are more tolerant of disturbance have less risk of declining on the landscape

Submitted by sdhandler on

Disturbances such as wildfire, flooding, and pest outbreaks are expected to increase in the future. Forests that are adapted to gap-phase disturbances, with stand-replacing events occurring over hundreds or thousands of years, may be less tolerant of more frequent widespread disturbances. Mesic hardwood forests can create conditions that could buffer against fire and drought to some extent, but these systems are not expected to do well if soil moisture declines significantly.

Systems that are limited to particular environments will have less opportunity to migrate in response to climate change.

Submitted by sdhandler on

Some species and forest types are confined to particular habitats on the landscape, whether through requirements for hydrologic regimes, soil types, or other reasons. Similar to species occurring in fragmented landscapes, isolated species and systems face additional barriers to migration. Widespread species may also have particular habitat requirements. For example, sugar maple is often limited to soils that are rich in nutrients like calcium, so this species may actually have less available suitable habitat than might be projected solely from temperature and precipitation patterns.

Species in fragmented landscapes will have less opportunity to migrate in response to climate change.

Submitted by sdhandler on

Habitat fragmentation can hinder the ability of tree species to migrate to more suitable habitat on the landscape, especially if the surrounding area is nonforested. Modeling results indicate that mean centers of suitable habitat for tree species will migrate between 60 and 350 miles by the year 2100 under a high emissions scenario and between 30 and 250 miles under milder climate change scenarios. Based on data gathered for seedling distributions, it has been estimated that many northern tree species could possibly migrate northward at a rate of 60 miles per century.

Low-diversity systems are at greater risk from climate change.

Submitted by sdhandler on

Studies have consistently shown that diverse systems have exhibited greater resilience to extreme environmental conditions and greater potential to recover from disturbance than less diverse communities. This relationship makes less diverse communities inherently more susceptible to future changes and stressors. The diversity of potential responses of a system to environmental change (response diversity), is a critical component of ecosystem resilience. Response diversity is generally reduced in less diverse ecological systems.

Southern or temperate species in northern Minnesota will be favored by climate change.

Submitted by sdhandler on

Impact models agree that many temperate species will experience increasing suitable habitat and biomass across the assessment area, and that longer growing seasons and warmer temperatures will lead to productivity increases for temperate forest types. The list of species projected to increase includes American basswood, black cherry, bur oak, eastern white pine, red maple, white oak, and a variety of minor southern species. Models also indicate that deciduous forest types have the potential for large productivity increases across northern Minnesota.

Northern Minnesota's boreal species will face increasing stress from climate change.

Submitted by sdhandler on

Impact models agree that boreal or northern species will experience reduced suitable habitat and biomass across the assessment area, and that they may be less able to take advantage of longer growing seasons and warmer temperatures than temperate forest communities. Across northern latitudes, it is generally expected that warmer temperatures will be more favorable to species that are located at the northern extent of their range and less favorable to those at the southern extent.