Forest [FAR1]

Legacy FAR1 strategy/approaches.

Taxonomy Machine Name
niacs_strategy
Taxonomy Alias
far1

The Central Hardwoods region's net forest productivity is not expected to change.

Submitted by dshannon on

Increases in drought, invasive plants, insects, disease, and wildfire are expected to negatively affect forest productivity in some parts of the region. Lags in migration of species to newly suitable habitat may also result in reduced productivity, at least in the short term. However, some of these declines may be offset by the positive effects increased carbon dioxide (CO2) has on photosynthetic rates and water use efficiency, and by a longer growing season.

Southern species in The Central Hardwoods region will be favored by climate change.

Submitted by dshannon on

Model results suggest an increase in suitable habitat for many species at or near the northern extent of their current range, including shortleaf pine, post oak, and blackjack oak. In addition, habitat may become favorable to species not currently found in the assessment area, such as loblolly pine. However, habitat fragmentation and the limited dispersal ability of seeds are expected to hinder the northward movement of the more southerly species despite the increase in habitat suitability. Most species can be expected to migrate more slowly than their habitats will shift.

Suitable habitat for northern species in the Central Hardwoods region will decline.

Submitted by dshannon on

Results from climate impact models suggest a decline in suitable habitat for northern species such as sugar maple, white ash, and American beech when compared with habitat suitability under current climates. These northern species may be able to persist in some southern portions of their range if potential new competitors from farther south are unable to colonize these areas, although they are expected to have reduced vigor and be under greater stress.

Many invasive species, insect pests, and pathogens in the Central Hardwoods region will increase or become more damaging.

Submitted by dshannon on

A warming climate is allowing some invasive plant species, insect pests, and pathogens to survive farther north than they had previously. One particular emerging threat to the region is the southern pine beetle, which attacks shortleaf and other pines. Oak decline, a disease complex brought about by droughtand other stressors, is expected to become a larger problem in the red oak group as droughts become longer and more widespread. Some drought- and fire-tolerant invasive plants, such as sericea lespedeza, may also benefit from projected climate changes.

Climate conditions will increase fire risks in the Central Hardwoods region by the end of the century

Submitted by dshannon on

At a global scale, the scientific consensus is that fire risk will increase by 10 to 30 percent due to higher summer temperatures and occasional increased periods of droughts. Projections for the central United States show low agreement among climate models on changes in fire probability in the near term, but the majority of models project an increase in wildfire probability by the end of the century . Fire seasons in the southeastern United States could nearly double in length and increase in severity.

The Central Hardwoods region soil moisture patterns will change, with drier soil conditions later in the growing season .

Submitted by dshannon on

Due to projected decreases in precipitation during summer or fall and increases in temperature throughout the year, some evidence suggests a slight decrease in surface soil moisture in the Central Hardwoods Region over the next century . In addition, total soil moisture is projected to increase during winter and spring and decrease in the late summer and autumn. Even if there are increases in precipitation in the summer, as a few models suggest, increases in evapotranspiration are projected to lead to lowersoil water availability .

The Central Hardwoods region's growing season will increase by 20 to 70 days by the end of the century.

Submitted by dshannon on

Evidence at both global and local scales indicates that growing seasons have been getting longer, and this trend is projected to become even more pronounced over the next century. As seasons shift so that spring arrives earlier and fall extends later into the year, phenology may shift for plant species that rely on temperature as a cue for the timing of leaf-out, reproductive maturation, and other developmental processes. Longer growing seasons could also result in greater growth and productivity of trees and other vegetation, but only if balanced by available water and nutrients.

Snow in the Central Hardwoods region will decrease, with subsequent decreases in soil frost.

Submitted by dshannon on

The Central Hardwoods Region is already experiencing a decline in snowfall, depth, and cover. Decreased snowfall and increased snowmelt from higher temperatures are projected to decrease the amount of snow on the ground in the region, and may make some locations snow-free in some years. In recent years, this reduction in snow cover has led to an increase in soil frost from decreased snow insulation.

Hydrologic model projections indicate that soil moisture, runoff, and streamflow may increase in the Central Hardwoods region during the spring as precipitation increases.

Submitted by dshannon on

Hydrologic modeling based on a range of climate models and scenarios suggests an increase in soil moisture, runoff, and streamflow thoughout the next century. The magnitude or frequency of flooding could potentially increase in the winter and spring due to increases in total runoff and peak streamflow during those time periods.